1444+x^2=(18x)^2

Simple and best practice solution for 1444+x^2=(18x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1444+x^2=(18x)^2 equation:



1444+x^2=(18x)^2
We move all terms to the left:
1444+x^2-((18x)^2)=0
determiningTheFunctionDomain x^2-18x^2+1444=0
We add all the numbers together, and all the variables
-17x^2+1444=0
a = -17; b = 0; c = +1444;
Δ = b2-4ac
Δ = 02-4·(-17)·1444
Δ = 98192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{98192}=\sqrt{5776*17}=\sqrt{5776}*\sqrt{17}=76\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-76\sqrt{17}}{2*-17}=\frac{0-76\sqrt{17}}{-34} =-\frac{76\sqrt{17}}{-34} =-\frac{38\sqrt{17}}{-17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+76\sqrt{17}}{2*-17}=\frac{0+76\sqrt{17}}{-34} =\frac{76\sqrt{17}}{-34} =\frac{38\sqrt{17}}{-17} $

See similar equations:

| 99+-86-13y=0 | | 3/x+1+3/x-1=4 | | x÷9=92/3 | | 3x+7x=75 | | x÷117/9=18 | | -3(-7v+6)-3v=3(v-5)-9 | | r/4− 2=2 | | 24x-22=-4(1-6x)-18 | | x÷117/9=18* | | u+(u-14)+(u+40)=180 | | 99+-86=13y=13 | | 3g-3=15 | | 2+6y=3y-1 | | k−8=−6 | | x+10=3 | | 14-3d=11 | | 30000=(10000)0.75x | | 6n-12=5n+2 | | 2(3)n+5=28 | | 5/n=8 | | 14-2x=12x-6 | | 6(y+1)-9=4(y-1)+2 | | 137-m=89 | | 10000=(10000)0,75x | | 11x-(-5x)-25=7 | | 5n+15=4n+22 | | -43-10x+13x=68 | | 46-6x=-6-10x | | d^2-d+7=-5 | | -4(-4w+7)-6w=2(w-5)-4 | | 10000=10000x0.75x | | 114=15w-21 |

Equations solver categories